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Quasiclassical quantisation and radiative decay of sine-Gordon 
solitons pinned by a micro-inhomogeneity 
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t Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov, 
310164, USSR 
$ P P Shirshov Institute for Oceanology of the USSR Academy of Science, 23 Krasikov 
Street, Moscow, 117218, USSR 

Received 9 September 1987 

Abstract. Dynamics of a sine-Gordon kink and small-amplitude breather bound on an 
attractive localised inhomogeneity are studied. The rates of energy emission from the kink 
oscillating near the inhomogeneity and from a quiescent breather performing internal 
oscillations are calculated. In the semiclassical approximation, discrete quantised energy 
spectra for the solitons of both types are found, with regard to field-theory corrections to 
a kink’s particle-like spectrum and to strong distortion of the breather’s shape. The rates 
of radiative energy emission are interpreted as finite widths of the quantised quasiclassical 
energy levels. Oscillations of the breather as a whole near the inhomogeneity are also 
considered. 

1. Introduction 

At the present time, the dynamics of solitons in exactly integrable systems has been 
well studied, both in the classical (Zakharov et a1 1980, Ablowitz and Segur 1981) and 
quantum (Faddeev and Korepin 1978, Rajaraman 1982) cases. However, in many 
physical applications there often occur equations with small Hamiltonian terms which 
break the exact integrability. There are a number of papers devoted to the development 
of a perturbative approach to such systems (see, e.g., McLaughlin and Scott 1978, 
Newell 1978, Kosevich and Kivshar 1982, Nozaki 1982, Olsen and Samuelsen 1982, 
Karpman et a1 1983, Kivshar 1984, Malomed 1984, 1985, 1987a,b, Kivshar and 
Malomed 1985, Salerno et a1 1985). However, most of these papers deal with adiabatic 
effects only, i.e. those disregarding radiative losses. In addition, the previous papers, 
except for Malomed (1987a, b), were devoted to the study of purely classical problems. 
In the present paper we intend to consider radiative and quantum (quasiclassical) 
effects in a system described by a perturbed sine-Gordon equation. As will be seen 
from the following, the methods we develop and use here are applicable to a rather 
wide class of various conservative (Hamiltonian) perturbations. However, in this work 
we will consider the perturbed system 

(1.1) 
only, for which calculations are relatively simple, and results can be presented in a 
sufficiently complete form. Equation (1.1) has at least two interesting physical applica- 
tions: it described a microresistor (provided E > 0) in a long Josephson junction (see, 
e.g., McLaughlin and Scott 1978) and a localised magnetic impurity (‘light spin’) in 

U,, - U,, +sin U = E ~ ( X )  sin U O < E < <  1 
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quasi-one-dimensional two-sublattice weak ferromagnets of the rare-earth orthoferrite 
type (see, e.g., Kivshar 1984). 

The unperturbed sine-Gordon equation has soliton solutions of two types (see, e.g., 
Zakharov et a1 1980, Ablowitz and Segur 1981): the kink 

ulp’=4 tan-’{exp[c+(x- [)I} (1.2) 

and the breather 

ubo,’=4p cos[(l-4p”’)t] sech[p(x- t ) I  (1.3) 
where 6 is the soliton’s coordinate, its velocity 4 being assumed small: 12<< 1, c+ = i.1 
is the kink’s polarity and p is the breather’s amplitude (we consider only the case of 
the small-amplitude breather, i.e. p << 1). 

As is well known, the inhomogeneity with E > 0 attracts a kink of either polarity 
(McLaughlin and Scott 1978), and a kink moving with sufficiently small velocity can 
be trapped by it on account of radiative energy losses (Malomed 1985). If we consider 
a trapped (pinned) kink, in the adiabatic approximation it moves as a non-relativistic 
particle with mass m = 8 in the potential (McLaughlin and Scott 1978) 

U = - 2 ~  sech’ 6. (1.4) 

sinh [(f)=[(2e -E) /E]”*s in(wt)  (1.5) 

The corresponding law of motion can readily be found: 

where w = J$, 
In the same (particle-like) approximation, quasiclassical ( WKB) quantisation of the 

kink’s motion is straightforward, the levels of the energy E = g / y  being (see, e.g., 
Landau and Lifshitz 1974) 

- 
being a parameter taking the values 0 < S 2 ~ .  

E!,’’ = ( l / y ) ( f i - $ n y ) 2  (1.6) 
where y is the non-dimensional coupling constant (Rajaraman 1982) and, as is generally 
used in quantum field theory, h = 1. In § 2 we calculate field-theoretical corrections 
to the quantum mechanical formula (1.6); these corrections arise from perturbation- 
induced corrections to the kink’s form. In the same section we calculate the rate of 
energy emission from the oscillating pinned kink. From the quasiclassical viewpoint, 
the emission rate can be interpreted as a finite width of a quantised energy level. 

In § 3 we consider the interaction of the small-amplitude breather (1.3) with the 
same inhomogeneity (1.1). Here we deal with the two small parameters, E and p. The 
case E << p is relatively simple (Malomed 1987a, b). In this paper we pay basic attention 
to the case E - p when the perturbation essentially distorts the breather’s shape. Using 
an asymptotic method analogous to that developed by Kosevich and Kovalev (1974) 
and Eleonski et a1 (1984), we find the breather’s form and the radiation wave field 
emitted by the breather. Then we accomplish quasiclassical quantisation of the 
breather. We consider both the quiescent breather and one performing small oscilla- 
tions near the inhomogeneity. 

2. A kink bound on the inhomogeneity 

2.1. Field corrections to the kink’s quasiclassical spectrum 

The analogy between the kink and the particle, mentioned in the introduction, is not 
exact. I t  is violated if one takes into account perturbation-induced corrections to the 
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kink's form (1.2): 

uk = uip'+ u(I ' .  (2.1) 

According to Kosevich and Kivshar (1983) and Kivshar (1984), the correction is 
determined by the general formula 

ZC 

= -1 1 (dA/A)(A2+$'(A2-i+iA tanh z)b(A,  t )  exp[i(A - 1/4A)x] (2.2) 
7T --U1 

provided (d&/dt)*<< 1 ,  where z = x - & ,  and b(A, t )  is a complex coefficient which 
constitutes the continuous spectrum scattering data in terms of the inverse scattering 
transform (Ablowitz and Segur 1981, Zakharov et a1 1980). For the perturbation ( 1 . 1 )  
evolution of the function B(A, t )  b(A, t )  exp[i(A + 1/4A)t] is determined by the fol- 
lowing equation: 

aB(A,  ?) /a t  = - f i E ( A 2 + i ) - 2  exp[i(A +1/4A)t] 

x (tanh &/cosh [)[A'-f+iA tanh 51. (2.3) 

It is natural to single out two qualitatively different parts of (2.3). The first one, to be 
called non-resonant, yields the oscillating part of b(A, t ) :  

b(A, t )  = - t E ( T A ( A 2 + $ ) - 2 ( A 2 - , + i A  tanh [)(tanh [/cosh 6) (2.4) 

which determines the correction U") to the kink's form via (2.2): 

EU sinh 5 
2 cosh z cosh3 5 u")(x, &) = - [ O(x)( 1 -e-' cosh z - e-' cosh &+ x )  

+ O(-x)(l -eZ cosh z -e5 cosh [ - x)]  (2.5) 

where O(x) is the step function: O(x) = 1 if x > 0, and O(x) = 0 if x < 0. The second 
part of (2.3) yields a secular term. As we will demonstrate in the next subsection, 
following the line of works by Malomed (1984) and Kivshar (1984), it actually 
determines the emission power, i.e. the rate of energy emission. 

The quasiclassical quantisation rule for the sine-Gordon wave field is (see, e.g., 
Rajaraman 1982) 

T = ~ T / ( E ) ' / ~  being the oscillation period. Inserting (2.5) into (2.6) and (1.2) into 
(2.1), and then (2.1) into (2.6), we obtain 

(2.7) yn = 4(&-JE) + Z 3 / 2 ~ ( ( 2 E / E ) 1 ' 2 )  

where 

F(x) = 1 - X  +:x3- (2/n)(4x2 - 1)(xZ- 1)'/ '+ ( ~ / T ) x ~  l O g [ X +  (x2 - 1)"2]. (2.8) 

Equation (2.7) can be rewritten in a form where the quantum mechanical spectrum 
(1.6) and the small correction to it are explicitly separated: 

E,, = ELo'+ E'," E ;I)  = ; y(  E Ip')'F( (2E/ y E  ip') ' I 2 ) .  (2.9) 
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2.2. Emission from an oscillating kink 

Even if we neglect dissipation, which is always present in real physical systems, the 
kink’s oscillations will fade due to emission of radiation (see, e.g., Malomed 1984). 
The basic formula for calculating the spectral density of the emission power P ( A )  had 
been set forward in the paper by Malomed (1984): 

d t  
(2.10) 

where b(A, t )  is determined by the same formula (2.3). Contrary to the non-resonant 
part (2.4), the expression (2.10) has contributions from the resonant part only that, 
from the viewpoint of (2.3),  is a secular term. After a rather lengthy calculation, the 
basic ingredient of which is expanding the RHS of (2.3) with regard to (1.5) into a 
Fourier series, we obtain the following expression for the main part of the emission 
power spectral density: 

cs n E 2  
( ~ E / E ) - ~ / ~ B ~ ” ~ [ A  + 1/4A -(2n + l )w] (2.11) 

= L o  STY(  1 +4A2) 

where we have designated 

B = (&-4z)/(&+JE). (2.12) 

As we see from (2.1 l ) ,  the emission takes place on the radiation frequencies A + 1/4A = 
(2n + 1)w with n = [ 1/20] + m, m = 0 , 1 , 2 , .  . . , [ 3 standing for the integer part. The 
eventual expressions for the corresponding powers are 

P, = (&/64ry)E5/‘(([1/h?]+m)(m -{1/42})”2B2(m+[”~’1). (2.13) 

Here {x} = x - [ X I .  For the typical values E - E (not E << E )  the total power PI,, can 
be expressed in terms of the standard special function (see, e.g., Bateman and Erdelyi 
1953) @(z, s, a ) = X ~ = o z ” ( a + n ) - s ,  

(2.14) 

Since B < 1,  we may say that (2.14) is exponentially small in 42, i.e. actually in &. 
Evidently, (2.13) and (2.14) are applicable provided yPlot<< E w  - g3’*. As is shown 

in figure 1 ,  this condition fails in small vicinities of the points l /&= 
A( 1 - B)( 1 + B)-’n, n being large integer numbers, when the corresponding multiple 
frequencies of the kink’s motion 2nw (see (1 .5 ) )  get too close to the spectral gap’s 
edge wo = 1. 

From the quasiclassical viewpoint formulated in the preceding subsection, equation 
(2.14) with E = EhO’y gives the rate T(n,$) of the radiative transition from the nth 
level to the level with number n -2([1/JE] + m + 1 )  = n - A n :  

r(n, m) = ~ , / 2 ( [ 1 / J E l +  m + 1 ) w  = P,. (2.15) 

The quasiclassical formula (2.15) is applicable provided An<< n. It is easy to verify 
that for the present problem this condition means E!,”>> y / 8 ~ .  Since E <2e, the 
necessary condition for the applicability of the quasiclassical approach is E >> y. 
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l/JE 

Figure 1. The depend_ence RoI(I/&),  B being fixed. The broken envelope curve is 
p IO1 = E 3 1 2 g ~ 2 C l + B ~ l l - B l ~ ' l ~ ~  (see equation (2.14)). 

3. A small-amplitude breather interacting with the inhomogeneity 

3.1. The shape of the perturbed breather 

As was mentioned in the introduction, in the case p - E the shape of a small-amplitude 
breather is essentially different from (1.3). Indeed, according to ( l . l ) ,  it is determined 
by the equation 

U,, - U,, +sin U = 0 (3.1) 

with the boundary conditions 

u(x = +O) = u(x = -0) (3.2) 

Following the lines of the asymptotic method (Kosevich and Kovalev 1974, 1975, 
Eleonski et al 1984), we seek a solution to (3.1) and (3.2) in the form of an expansion 
in powers of the small amplitude p :  

u(x, t ) = A ( x ) ~ o s w t + B ( x ) c o s 3 w t +  . . .  (3.3) 

A ( x ) = p A I ( x ) + p 3 A 3 ( x ) + .  . . 

(1  .+ ) ' /2 ,1  -L 2P 2 

u,(x = -0) - u,(x = +0) = E sin u(x = 0). 

where 

B(x)  = p3B3(x) +. . . . (3.4) 

Substituting (3.3) and (3.4) into (3.1) in the first approximation yields the relation 

(3.5) 

(cf (1.3)), and the equation for A,(x) :  

d*A,/d(pX)' -A,  +$A: =O. (3.6) 
The solution to (3.6) bounded at infinity is well known, 

A,(x)  = 4 sech[p(x + xo)] (3.7) 
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xn being an arbitrary constant. Substituting (3.7) into (3.3), and (3.3) into the boundary 
condition (3.2), we obtain in the first approximation a solution of the form 

u ( x , t ) = 4 p  sech[p(~x/+x, ) ]cosw? (3.8) 

tanh(px0) = ~ / 2 p .  (3.9) 

xg now being determined by the relation 

In further approximations, substituting (3.3) and (3.4) into (3.1) enables us to 
express A3(x), B 3 ( x ) ,  . . . , in terms of A , ( x )  (see Kosevich and Kovalev 1975). However, 
in the approximation - p 3  already, we cannot satisfy the boundary condition (3.2) 
since we have no more arbitrary parameters in the solution, if we admit only functions 
vanishing at I x \ + o o .  It is known (Kosevich and Kovalev 1975) that to resolve this 
problem one should supplement the solution (3.3) and (3.4) by travelling waves escaping 
from the breather. So, with accuracy up to the terms -p3 ,  the full solution takes the 
form 

u ( x ,  t )=4p(sech z){[l+&p2(2-sech2 z ) ]  cos wt--&’sech’ z cos 3wrj 

+ A0 COS(JS/ x 1 - 3wt) 

w being determined in (3.5), z = p (  1 x 1 + Xg) and 

(3.10) 

A. = -$ tanh(pxo) sech3(pxn). (3.11) 

With this accuracy, the condition (3.9) for Xo is replaced by 

tanh(pxJ == ( ~ / 2 p ) { l + p ’ [ ~ - ~ ( ~ / 2 p ) ’ ] ) .  (3.12) 

The form of the ‘distorted’ breather (3.10)-(3.12) for the two cases E SO is depicted 
in figures 2(a)  and ( b ) .  ---A-;l --e-- 

X -Xc XQ X 

Figure 2. The shape of the breather (3.10)-(3.12); ( a )  E > O ;  ( b )  E < O .  The broken curve 
corresponds to the first approximation (3.8) and (3.9). The full  curve is wavy due to the 
radiation part of the wave field (the last term on the R H S  of (3.10)). 

It is natural to assume that the breather will be stable only in the case E > 0, when 
the inhomogeneity attracts the wave field. The approach developed here for the case 
E - p is valid for E << p as well. One should keep in mind that equation (3.9) has no 
real solution, i.e. the breather does not exist, unless 

p > M .  (3.13) 

3.2. Radiative decay and quantisation of the breather 

The energy E b r  of the breather can be easily calculated in the approximation conformal 
to (3.8) and (3.9): 

(3.14) E b r  = ( 16/ ? ) ( p  - f E  1. 
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One can find the rate P of energy emission from the breather, using the next approxima- 
tion (3.10)-(3.12): 

X 

P E  -dE,,/dt = -{ dx(u,u,) (3.15) 
- X  

the angular brackets standing for time averaging. The result is 

(3.16) 

the radiation frequency being s1= 3. 
In particular, in the limit case 

0 < U = p - + E  << +E (3.17) 

when (3.8) takes the form 

u(x, t ) = 4 p  sech[plxl+log(e/u)] cos w t  (3.18) 

and, according to (3.14) and (3.15), 

Ebr= 1 6 u l  y P = (3 x 6 2 5 / 8 a y ) ~ ’ u ~  (3.19) 

i.e. U plays the role of the effective breather’s amplitude, the law of its fading, following 
from (3.19), is 

dv ld t  = -(3 x 6 2 5 / 1 2 8 J i ) ~ ’ u ~ .  (3.20) 

As we see from (3.20), v fades as l/;S, provided t >> E - ’ .  

Finally, the breather can be quantised according to the Bohr-Sommerfeld rule 
(2.6). The final expression for the spectrum is 

p., = pIp)+p(nl) 

where p.‘,“’ = yn  + + E ,  and 

(3.21) 

(3.22) 

The expansion (3.21) is pertinent provided 1 << n << p - ’ .  According to (3.14), the 
corresponding energy levels are 

E,  = n + ~ ( p u i p ’ ~ ) .  (3.23) 

Note that the term py ’  was found previously by Malomed (1987a, b) in the framework 
of the perturbation theory for solitons, i.e. for E << p. 

As to the emission power (3.16), from the quasiclassical viewpoint it gives the finite 
width of the discrete levels (3.23) stipulated by the possibility of the radiative transition 
n + n -3, the transition rate being r = fP  (cf (2.15)). 

3.3. Oscillations of the breather near the inhomogeneity 

In 0 3.2 we dealt with the quiescent breather. However, in the limit case (3.17) the 
asymptotic approach developed above can be generalised to describe small oscillations 
of the breather near the inhomogeneity. These oscillations will be called external to 
distinguish them from the internal oscillations of the breather. A corresponding solution 
u(x, t )  is looked for in the form (cf (3.18)) 

(3.24) U( x, t )  = 4p, sech(p, I x I + 4,) cos w t  j = 1,2 
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where j = 1 for x > 0 and j = 2 for x < 0. Inserting (3.24) into the boundary conditions 
(3.2), we readily obtain the equations 

p1 sech 4' = p2 sech 42 

p l  tanh 41 + p2 tanh = E 

(3.25a) 

(3.256) 

where we have set sin u(x = 0) = u ( x  = 0). The system of two linear equations (3.25) 
for p, yields 

p, = E cosh 4,/(sinh 4' +sinh &). (3.26) 

Small external oscillations of the breather near the inhomogeneity can be described 
by setting 41,2 = 4 * *( t ) ,  V<< 4, where 4 is a constant and 9 is a slowly varying 
function of time. Inserting this into (3.26), we obtain the expansions for p,: 

p 1 , 2 - $ ~  =*;E t a n h q + + ( l i * )  e -2*+O(EF3 e-2') (3.27) 

(recall that, due to (3.17), exp(-24) = ( p  - + E ) & - '  is a small quantity). 

in powers of the wave field up to u4 terms: 
The underlying equation (1.1) corresponds to the following Lagrangian expanded 

X 

L = $ dx(  U: - u t  - U' + &u4+ su26(x)) .  (3.28) 

Inserting (3.24), (3.27) and (3.5) into (3.28) in the first approximation yields the 
following expression for the effective potential energy U(*) of the small external 
oscillations averaged in the fast internal oscillations: 

U(*) = 1 2 e 3 ~ 2  exp(-44).  (3.29) 

To find the effective kinetic energy T, we note that differentiating (3.27) yields, in the 
lowest approximation, d p / d t = $ E  dF/d t .  Inserting this into (3.28) brings us to the 
averaged expression 

T = ~ E  e ~ p ( - 2 4 ) ( d V / d t ) ~ .  (3.30) 

Using (3.29) and (3.301, we immediately find the frequency x of the small external 
oscillations: 

x2 = 3e2 exp(-24).  (3.31) 

Since, according to (3.27), exp(-2+) = ( p  -&)E-' ,  where p stands for the mean value 
of p,, which is the same for j = 1 and 2, we may finally write (3.31) in the form 

x2= 3 e ( p  -is). (3.32) 

It is important that, due to (3.171, x'<< E ' .  Indeed, the above consideration actually 
implied p,(t)  and 4,,(t) to vary in time adiabatically slowly on the background of the 
fast internal oscillations. One can verify that, with the accuracy to which the expressions 
(3.29) and (3.30) have been derived, this assumption is warranted by the condition 
x2<< E ' .  This is why the consideration of the small external oscillations can be per- 
formed self-consistently for the limit case (3.17) only. 

From the quasiclassical viewpoint, the external oscillations result in the splitting 
of each internal oscillation level (3.23) into a band of 'fine structure' levels 

--.r 

E,,,,, = n -+ mx (3.33) 
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where m is the quantum number of the external oscillations (in the quasiclassical case 
m >> 1). Accordingly, each emission line corresponding to the radiative transition 
n + n - 3 between the internal oscillation levels will acquire ‘fine structure’ correspond- 
ing to the radiation frequencies 3 + Amx, each line of the ‘fine structure’ being generated 
by a transition (n ,  m )  -, ( n  - 3, m - Am) between the split levels (3.33). These transitions 
may be considered quasiclassically provided A m  << m. 
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